One-Vortex Moduli Space and Ricci Flow

نویسنده

  • Nicholas S. Manton
چکیده

The metric on the moduli space of one abelian Higgs vortex on a surface has a natural geometrical evolution as the Bradlow parameter, which determines the vortex size, varies. It is shown by various arguments, and by calculations in special cases, that this geometrical flow has many similarities to Ricci flow. email [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fe b 20 09 Space of Ricci flows ( I )

In this paper, we study the moduli spaces of noncollapsed Ricci flow solutions with bounded energy and scalar curvature. We show a weak compactness theorem for such moduli spaces and apply it to study isoperimetric constant control, Kähler Ricci flow and moduli space of gradient shrinking solitons.

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

The Dynamics of Chern-Simons Vortices

We study vortex dynamics in three-dimensional theories with ChernSimons interactions. The dynamics is governed by motion on the moduli space M in the presence of a magnetic field. For Abelian vortices, the magnetic field is shown to be the Ricci form over M; for non-Abelian vortices, it is the first Chern character of a suitable index bundle. We derive these results by integrating out massive f...

متن کامل

Topological Solitons and their Moduli Spaces

Description of the research: Topological solitons are smooth, localised, finite energy solutions in non-linear field theories. The soliton number is conserved due to a topological constraint, such as a winding number or a non-trivial Chern class. Originally motivated from physics, these solitons give rise to interesting mathematical objects which can be studied using differential geometry and a...

متن کامل

Numerical Investigation of Vortex Interaction in Pipe Flow

To discover the nonlinear characteristics of pipe flow, we simulated the flow as a sum of many vortex rings. As a first step, we investigated the nonlinear interaction among a maximum of three vortex rings. The pipe wall was replaced by many bound vortices. A free vortex ring moves right or left according to the radius, and that of a particular radius keeps the initial position. The energy of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008